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We introduce an automatic segmentation framework that blends the advantages of color-, texture-, shape-, and motion-based seg-
mentation methods in a computationally feasible way. A spatiotemporal data structure is first constructed for each group of video
frames, in which each pixel is assigned a feature vector based on low-level visual information. Then, the smallest homogeneous
components, so-called volumes, are expanded from selected marker points using an adaptive, three-dimensional, centroid-linkage
method. Self descriptors that characterize each volume and relational descriptors that capture the mutual properties between
pairs of volumes are determined by evaluating the boundary, trajectory, and motion of the volumes. These descriptors are used
to measure the similarity between volumes based on which volumes are further grouped into objects. A fine-to-coarse clustering
algorithm yields a multiresolution object tree representation as an output of the segmentation.
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1. INTRODUCTION

Object segmentation is important for video compression
standards as well as recognition, event analysis, understand-
ing, and video manipulation. By object we refer to a collec-
tion of image regions grouped under some homogeneity cri-
teria where a region is defined as a contiguous set of pixels.

Basically, segmentation techniques can be grouped into
three classes: region-based methods using a homogeneous
color or texture criterion, motion-based approaches utiliz-
ing a homogeneous motion criterion, and object tracking.
Approaches in the region-oriented domain range from em-
pirical evaluation of various color spaces [1], to clustering
in feature space [2], to nearest-neighbor algorithm, to pyra-
mid linking [3], to morphological methods [4], to split-and-
merge [5], to hierarchical clustering [6]. Color-clustering-
based methods often utilize histograms and they are com-
putationally simple. Histogram analysis delivers satisfactory
segmentation result especially for multimodal color distribu-
tions, and where the input data set is relatively simple, clean,
and fits the model well. However, this method lacks general-
ity and robustness. Besides, histogram methods fail to estab-
lish spatial connectivity. Region-growing-based techniques
provide better performance in terms of spatial connectiv-

ity and boundary accuracy than histogram-based methods.
However, extracted regions may not correspond to actual
physical objects unless the intensity or color of each pixel
in objects differs from the background. A common problem
of histogram and region-based methods arises from the fact
that a video object can contain several totally different colors.

On the other hand, works in the motion-oriented do-
main start with an assumption that a semantic video object
has a coherent motion that can be modeled by the same set of
motion parameters. This type of motion segmentation works
can be separated into two broad classes: boundary-placement
schemes [7] and region-extraction schemes [8, 9, 10, 11, 12].
Most of these techniques are based on rough optical flow
estimation or unreliable spatiotemporal segmentation, and
may suffer from the inaccuracy of motion boundaries. The
estimation of dense motion field tends to be extremely slow,
hence not suitable for processing of large volumes of video
and real-time data. Blockwise or higher-order motion mod-
els may be used instead of dense motion fields. However, a
chicken-egg problem exists in modeling motion: should the
region where a motion model is to be fitted be determined
first, or should the motion field to be used to obtain the re-
gion be calculated first? Stochastic methods may overcome
this priority problem by simultaneously modeling flow field
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and spatial connectivity, but they require that the number of
objects be supplied as a priori information before the seg-
mentation. Small and nonrigid motion gives rise to addi-
tional model fitting difficulties. Furthermore, modeling may
fail when a semantic video object has different motions in
different parts of the object. Briefly, computational complex-
ity, region-motion priority, and modeling issues are to be
considered in utilizing dense motion fields for segmentation.

The last class is “tracking” [13]. A tracking process can
be interpreted as the search for a target. It is the trajecto-
ries of the dynamic parameters that are linked in a time.
This process is usually embodied through model matching.
Many types of features, for example, points [14], intensity
edges [15], textures [16], and regions [17] can be utilized
for tracking. Three main approaches have been developed
to track objects depending on their type: whether they are
rigid, nonrigid, or have no regular shape. For the first two
approaches, the goal is to compute the correspondences be-
tween objects already tracked and the newly detected moving
regions, whereas the goal of the last approach is handling the
situations where correspondences are ambiguous. The major
difficulty in tracking is to deal with the interframe changes
of moving objects. It is clear that the image shape of a mov-
ing object may undergo deformation, since a new aspect of
the object may become visible or an actual shape of an object
may change. Thus a model needs to evolve from one frame
to the next, capturing the changes in the image shape of an
object as it moves. Although for most of the cases, more than
two video frames are already available before segmentation,
existing techniques usually view tracking as a unidirectional
propagation problem.

Semiautomatic segmentation methods have the power of
correlating semantic information with extracted regions us-
ing human assistance. However, such assistance often obli-
gates training of users to understand the behaviour of the
segmentation method. Besides, real-time video systems re-
quire user-independent processing tools. The vast amount of
video data demands for automatic segmentation since enter-
ing object boundaries by hand is cumbersome.

In summary, a single homogeneous color or motion cri-
terion does not lead to satisfactory extraction of object infor-
mation because each homogeneous criterion can only deal
with a limited set of scenarios, and a video object may con-
tain multiple colors and complex motions.

2. PROPOSED SEGMENTATION FRAMEWORK

Each of the segmentation algorithms summarized before has
its own advantages. It would be desirable to have a general
segmentation framework that combines distinct qualities of
separate methods without getting hampered into their pit-
falls. Such a system is expected to be made up by compati-
ble processing modules that can be easily modified with re-
spect to the application parameters. Even user-assistance and
system-specific a priori information should be easily embed-
ded into the segmentation framework without reconstruct-
ing the overall system architecture. Thus, we designed our
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Figure 1: Flow diagram of the video segmentation algorithm show-
ing all the major modular stages.

segmentation framework to meet the following targets:

(i) automaticity,
(ii) adaptability,

(iii) accuracy,
(iv) computational complexity.

A general flow diagram of the framework is given in
Figure 1. In the diagram, the main algorithm is shown in
gray, and its modular extensions that include application-
specific modules, that is, skin color detection, frame differ-
ence, and motion vector processing, are shown by the dashed
lines. When MPEG-7 dominant color descriptors are avail-
able, they can be utilized in the volume-growing stage to
adapt the color similarity function parameters. Frame differ-
ence score becomes useful where the camera system is sta-
tionary. Skin color can be incorporated as an additional fea-
ture for human detection. For MPEG encoded sequences,
motion vectors can be used at the hierarchical clustering
stage.

Before segmentation, the input video sequence is sliced
into video shots that are defined as groups of consecutive
frames having similar attributes between two scene cuts. The
segmentation algorithm takes a certain number of consecu-
tive frames within the same video shot, and processes all of
these frames at the same time. The number of frames cho-
sen can be the same as the length of the corresponding shot,
or a number that is sufficient to have discriminatory object
motion within the chosen frames. A limiting factor may be
the memory requirement due to the large data size. After fil-
tering, a spatiotemporal data structure is formed by comput-
ing pointwise features of frames. These features include color
values, frame difference score, skin colors, and so forth as il-
lustrated in Figure 2.

We acquire homogeneous parts of the spatiotemporal
data by growing volumes around selected marker points.
By volume growing, all the frames of an input video shot
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Figure 2: Construction of spatiotemporal data from the video.

are segmented simultaneously. Such an approach solves the
problem of tracking objects and correlating the segmented
regions between the consecutive frames since no account of
the quantitative information about the regions and bound-
aries need to be kept. Volume-growing approach solves the
problem of “should the region of support be obtained first
by color segmentation followed by motion estimation, or
should the motion field be obtained first followed by seg-
mentation based on motion consistency?” by supplying the
region of support and an initial estimation of motion at the
same time. In addition, volume growing is computationally
simple.

The grown volumes are refined to remove small and erro-
neous volumes. Then, motion trajectories of individual vol-
umes are determined. Thus, without explicit motion estima-
tion, a functional approximation of motion is obtained. Self
descriptors for each volume and mutual descriptors for a pair
of volumes are computed from volume trajectories and also
from other volume statistics. These volumewise descriptors
are designed to capture motion, shape, color, and other char-
acteristics of the grown volumes. At this stage, we have the
smallest homogeneous parts of a video shot and their rela-
tions in terms of mutual descriptors. Application-specific in-
formation can be incorporated as separate descriptors such
as skin color.

In a following clustering stage, volumes are merged into
objects by evaluating their descriptors. An iterative, hierar-
chical fine-to-coarse clustering is carried out until the mo-
tion similarity of merged objects becomes small. After clus-
tering, an object partition tree that gives the video object
planes for successively smaller number of objects is gener-
ated. The object partition tree can be appended to the input
video for further recognition, data mining, and event analysis
purposes. Note that this framework does not claim to obtain
semantic information automatically, but it aims to provide
tools for efficient extraction and integration of explicit visual
features to improve the object detection. Thus, a user can eas-
ily change the visual definition of semantic object at the clus-
tering stage, which has an insignificant computational load,
without segmenting the video over again.

3. FORMATION OF SPATIOTEMPORAL DATA

3.1. Filtering

In the preprocessing stage, the input frames are filtered first.
Two main objectives of filtering are noise removal and sim-
plification of color components. Noisy or highly textured

Figure 3: Original and filtered images using the simplification filter.

frames can cause oversegmentation by producing excessive
number of segments. This not only slows down the algo-
rithm, but also increases the memory requirements and de-
grades the stability of the segmentation. However, most noise
filtering techniques demand intensive operations. Thus, we
have developed a computationally efficient simplification fil-
ter which can retain the edge structure, and yet smooth the
texture between edges. Simply stated, color value of a point
is compared with its neighbors for each color channel. If the
distance is less than a threshold, the point’s color value is up-
dated by the average of its neighbors within a local window.
For the performance comparison of this filter with other
methods including Gaussian, median, morphological filter-
ing, and so forth, see [18]. A sample filtering result is given
in Figure 3.

3.2. Quantization and color space

To further simplify input images, color quantization is ap-
plied by estimating a certain number of dominant colors.
Quantization also decreases the total processing time by al-
lowing use of smaller data structures in the implementation
of the code. The dominant colors are determined by a hi-
erarchical clustering approach incorporating the generalized
Lloyd algorithm (GLA) at each level. Suppose we already
have an optimal partitioning of all color vectors in the in-
put image into 2k level. At the (k + 1)th level, we perturb
each cluster center into two vectors, and use the resulting 2k+1

cluster centers as the initial cluster centers at this level. We
then run the GLA to obtain an optimal partition with 2k+1

levels. Specifically, starting with the initial cluster centers, we
group each input color vector to its closest cluster center. The
cluster centers are then updated based on the new grouping.
A distortion score is calculated which is the sum of the dis-
tances of the color vectors to the cluster centers. The group-
ing and the recalculation of the cluster centers are repeated
until the distortion does not reduce significantly anymore.
Initially at level k = 0, we have one cluster only, including all
the color vectors of the input image. As a final stage, the clus-
ters that have close color centers are grouped to decide on a
final number of dominant colors.

The complexity of the metric used for computing color
distances is a major factor in selecting a color space since
most of the processing time is spent while computing the
color distances between the points. We preferred the YUV
color space since the color distance can be computed using
simpler norms. In addition, the YUV space separates illu-
minance from luminance components, and represents color
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Figure 4: Quantization by 32, 16, and 8 dominant colors, which are
shown next to each image. As visible, very low quantization levels
may disturb the color properties, that is, skin colors and edges.

in more accordance with human perception than the RGB
[19]. Thus, the segmentation results are visually more plau-
sible. The above-described dominant colors have minor dif-
ferences from the MPEG-7 dominant color descriptors. For
example, MPEG-7 has a smaller number of color bins, and
it is based on Lab color space. In the case where MPEG-7
descriptors are available with the input video, the dominant
color descriptor can be directly used to quantize the input
video after suitable conversion of the color space. In Figure 4,
quantized images with different number of dominant colors
are given.

3.3. Feature vectors

Frames of the input video shot are then assembled into a spa-
tiotemporal data structure S. Each element of this data struc-
ture has a feature vector w(p) = [Y ,U ,V , δ, θ1, . . . , θK , ρ].
Here, p = (x, y, t) is a point in S where (x, y) is the spatial co-
ordinate and t is the frame number. We will denote individ-
ual attributes of the feature vector, for example, the Y color
value of point p, by Y(p). Sometimes we also use w(p, k)
to represent feature k at point p, for example, k = Y ,U ,V .
Table 1 summarizes the notation. Besides the color values,
additional attributes can be included in the feature vector.
The frame difference score δ is defined as the pointwise color
dissimilarity of two frames with respect to a given set of rules.
One such rule is

δ(p) = ∣∣Y(p)− Y
(
pt−
)∣∣, (1)

where pt− = (x, y, t − 1). The texture features θ1, . . . , θK are
computed by convolving the luminance channel Y with the
Gabor filter kernels as

θk(p) =
∣∣∣∣Y(p)⊗ 1

2πσ2
e−((x2+y2)/2πσ2)e−2π(uk+vk )

∣∣∣∣. (2)

It is sufficient to employ the values for the spatial frequency√
u2 + v2 = 2, 4, 8 and the direction tan−1(u/v) = 0, π/4, π/2,

3π/4, which leads to a total of 12 texture features. Obtaining
texture features is computationally as intensive as estimating
motion vectors by phase correlation due to the convolution
process. Blending texture and color components into a sin-
gle similarity measure is usually done by assigning weighting
parameters [20]. In this work, we concentrate on the color
components.

The skin color score ρ indicates whether a point has high
likelihood of corresponding to human skin. We obtained a

Table 1: Notation of parameters.

S Volumetric spatiotemporal data

p Point in S; p = (x, y, t)

w(p) Feature vector at p

Y(p), U(p), V(p) Color values at p

δ(p) Frame difference at p

θk(p) Texture features at p

ρ(p) Skin color score at p

∇Y ,∇U ,∇V Color gradient

mi Marker of volume Vi

ci Feature vector of volume Vi

Vi A volume within S

γ(i) Self descriptor of volume Vi

Γ(i, j) Relational descriptor of pair Vi, Vj

mapping from the color space to the skin color values by pro-
jecting the color values of a large set of manually segmented
skin images that include people of various races, genders, and
ages. This mapping is used as a lookup table to determine the
skin color score. More details on this derivation can be found
in [21]. In Figure 5, skin color scores of sample images are
shown. In these images, higher intensity values correspond
to higher likelihoods.

4. VOLUME GROWING

Volumes are the smallest connected components of the spa-
tiotemporal data S with homogeneous color and texture dis-
tribution within each volume. Using markers and evaluat-
ing various distance criteria, volumes are grown iteratively
by grouping neighboring points of similar characteristics.

In principle, volume-growing methods are applicable
whenever a distance measure and a linkage strategy can be
defined. Several linkage methods were developed in the liter-
ature; they differ in the spatial relation of the points for which
the distance measure is computed. In single-linkage volume
growing, a point is joined to its 3D neighboring points whose
properties are similar enough. In hybrid-linkage growing,
similarity among the points is established based on the prop-
erties within a local neighborhood of the point itself instead
of using the immediate neighbors. In the case of centroid-
linkage volume growing, a point is joined to a volume by
evaluating the distance between the centroid of the volume
and the current point. Yet another approach is to provide not
only a point that is in the desired volume but also counterex-
amples that are not in the volume. Two-dimensional versions
of these linkage algorithms are explained in [22]. In the fol-
lowing, we first describe the marker selection process, and
then the centroid-linkage algorithm in more detail.

4.1. Marker assignment

A marker is the seed of a volume around it. Since a volume’s
initial properties will be determined by its marker, a marker
should be a good representative of its local neighborhood. A
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Figure 5: Skin color scores ρ of sample images.

point that has a low color gradient magnitude satisfies this
criterion. Let mi be a marker for volume Vi, and Q the set of
all available points, that is, it is all the points of S initially. The
color gradient magnitude is defined as follows:

∣∣∇S(p)
∣∣ = ∣∣∇Y(p)

∣∣ +
∣∣∇U(p)

∣∣ +
∣∣∇V(p)

∣∣ (3)

such that the gradient magnitude of a channel is

∣∣∇Y(p)
∣∣ = ∣∣Y(px+

)− Y
(
px−
)∣∣ +

∣∣Y(py+

)− Y
(
py−

)∣∣
+
∣∣Y(pt+

)− Y
(
pt−
)∣∣,

(4)

where px+ and px− represent equal distances on the x-
direction from the center point p, that is, (x − 1, y, t), (x +
1, y, t), and so forth. We observed that using L2 norm instead
of L1 norm does not improve the results. The point having lo-
cal minimum gradient magnitude is chosen as marker. A vol-
ume Vi is grown as will be explained in the following section,
and all the points of the volume are removed from the set Q.
The next minimum in the remaining set is chosen, and the
selection process is repeated until no more available points
remain in S. Rather than searching the full-resolution spa-
tiotemporal data, a subsampled version of it is used to find
the minima since searching in full resolution is computation-
ally costly.

More computational reduction is achieved by dividing
subsampled S into slices. A minimum gradient magnitude
point is found for the first slice, and a volume is grown, then
the next minimum is searched in the next slice as illustrated
in Figure 6. The temporal continuity is preserved by growing
a volume in the whole spatiotemporal data S after selecting
a marker in the current slice. In case the markers are limited
only within the first frame, the algorithm becomes a forward
volume growing.

Generally, the marker points are uniformly distributed
among the frames of a video shot in which objects are con-
sistent and motion is uniform. For such video shots, a sin-
gle frame of S can be used for selection of all markers in-
stead of using the whole S. However, the presence of fast
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Figure 6: Fast marker selection finds the minimum gradient mag-
nitude points in the current slice of the downsampled data. Then, a
volume is grown within the spatiotemporal data, and the process is
repeated until no point remains as unclassified.

moving small objects, highly textured objects, and illumina-
tion changes may deteriorate the segmentation performance
if a single frame is used. Besides, objects that are not visible
in the single frame may not be detected at all. The iterative
slice approach overcomes these difficulties.

4.2. Centroid-linkage algorithm

For each new volume Vi, a volume feature vector ci, the
so called “centroid,” is assigned. Centroid-linkage algorithm
compares the features of a candidate point to the current vol-
ume’s feature vector. This vector is composed of the color
statistics of the volume, and initially it is equal to the feature
vector of the point chosen as marker ci(k) = w(mi, k). In a
6-point neighborhood, two in each of the x, y, t direction,
the color distances of the adjoint points are calculated. If the
distance d(ci, w(q)) is less than a volume-specific threshold
εi, the point q is included in the volume, and the centroid
vector is updated as

cni (k) = 1
N

[
(N − 1)cn−1

i (k) + w(q, k)
]
, (5)

where N is the number of points in the volume after the in-
clusion of q. If the point q has a neighbor that is not in-
cluded in the current volume, it is assigned as an “active-
shell” point. Thus, active-shell points constitute the bound-
ary of the volume. In the next cycle, the unclassified neigh-
bors of the active-shell points are probed. Linkage is repeated
if either no point remains in the active shell or in the spa-
tiotemporal data.

There are two other possible linkage techniques: single-
linkage, which compares a point with only its immediate
neighbors, and dual-linkage, which compares with the cur-
rent object boundary. We observed that these two techniques
are prone to segmentation errors such as leakage and color
inconsistent segments. The sample results for the various
linkage algorithms are given in Figure 7.
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(a) (b) (c)

Figure 7: Segmentation by (a) single linkage, (b) dual linkage, and (c) centroid linkage. Single linkage is prone to errors.

4.3. Distance calculation and threshold determination

The aim of the linkage algorithm is to generate homoge-
neous volumes. Here we define homogeneity as the quality
of being uniform in color composition. In other words, it
is the amount of color variation. For a moment, let us as-
sume a color density function of the data is available. Modal-
ity of this density function refers to the number of its prin-
cipal components, that is, the number of separate models for
a mixture of models representation. A high modality indi-
cates larger number of distinct color clusters of the density
function. Our key hypothesis is that points of a color ho-
mogeneous volume are more likely to be in the same color
cluster rather than being in different color clusters. Thus, we
can establish a relationship between the number of clusters
and the homogeneity specifications of volumes. If we know
the color cluster that a volume corresponds to, we can de-
termine the specifications of homogeneity for that volume,
that is, parameters of the color distance function and its
threshold.

Before volume growing, we approximate the color den-
sity function by deriving a 3D color histogram of the slice.
We find cluster centers within the color space either by as-
signing the dominant colors as centers or using the described
GLA clustering algorithm. We group each color vector w(p)
to the closest cluster center, and for each cluster we compute
a within-cluster distance variance σ2.

After choosing a marker and initializing a volume feature
vector ci, we determine the closest cluster center to the ci in
the color space. Using the variance of this cluster, we define
the color distance and its threshold as follows:

d
(

ci, q
) =√∑

k

(
ci(k)−w(q, k)

)2
, (6)

where k : Y ,U ,V and the threshold is εi = 2.5σ to let the
inclusion of the 95% of colors within the same color cluster.
The above-formulation assumes that the color channels are
equally contributing (due to the Euclidean distance norm),
and the 3D color histogram is densely populated (for effec-
tive application of clustering). However, a dense histogram
may not be available in case of small slice sizes, and color

components may not be equally important in case of the
YUV space.

We also developed an alternative approach that uses sep-
arate 1D histograms. Local maxima hn(k) of the histograms
are obtained for each channel such that hn(k) < hn+1(k) and
n = 1, . . . ,Hk. Note that number of maxima Hk for differ-
ent channels may be different. Histograms are clustered, and
within-cluster distance variance is computed for each clus-
ter similarly. Using the current marker point mi, three coef-
ficients τi(k), k : Y ,U ,V (one for each histogram) are deter-
mined as

τi(k) = 2.5σj(k),

j = arg min
n

∣∣ci(k)− hn(k)
∣∣,

(7)

where hn(k) is the closest center. These coefficients specify
the cluster ranges. A logarithmic distance function is formu-
lated as follows:

d
(

ci, q
) =∑

k

Hk log2

(
1 +

∣∣ci(k)−w(q, k)
∣∣

τi(k)

)
. (8)

We normalized the channel differences with the cluster
ranges to equalize the contribution of a wide cluster in a his-
togram to a narrow cluster in another histogram. The loga-
rithmic term intended to suppress the large color mismatches
of a single histogram. Considering that a channel that has
more distinctive colors should provide more information for
segmentation, the channel distances are weighted by the cor-
responding Hk’s. Then, the distance threshold for volume Vi

is derived as

εi =
∑
k

Hk. (9)

4.4. Modes of volume growing

Volume growing can be carried out either by growing multi-
ple volumes simultaneously, or expanding only one volume
at a time. Furthermore, the expansion itself can be done ei-
ther in an intraframe-interframe switching fashion, or a re-
cursive outward growing style.
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(i) Simultaneous growing. After certain number of
marker points are determined, volumes are grown si-
multaneously from each marker. At a growing cycle,
all the existing volumes are updated by examining the
neighboring points to the active shell of the current
volume. In case a volume stops growing, an additional
marker that is an adjoint point to the boundary of the
stopped volume is selected. Although simultaneous
growing is fast, it may divide homogeneous volumes
into multiple smaller volumes, thus volume merging
becomes is necessary.

(ii) One-at-a-time growing. At each cycle, only a single
marker point is chosen, and a volume is grown around
this marker. After the volume stops growing, another
marker in the remaining portion of the spatiotemporal
data is selected. This process continues until no more
point remains in S. An advantage of one-at-a-time
growing is that it can be implemented by recursive pro-
gramming. It also generates more homogeneous vol-
umes. However, it demands more memory to keep all
the pointers.

(iii) Recursive diffusion. The neighboring points to the ac-
tive shell are evaluated disregarding whether they are
in the same frame with the active shell point or not
as illustrated in Figure 8. After a point is included
within a volume, the point becomes a point of the ac-
tive shell as long as it has a neighbor that is not in-
cluded in the same volume. By updating the active
shell as described, the volume is diffused outward from
the marker. Instead of using only adjoint points, other
points within a local window around the active shell
point can be used in diffusion as well. However, in
this case the computational complexity increases, and
moreover, connectivity may deteriorate.

(iv) Intraframe-interframe switching. A volume grown us-
ing recursive diffusion tends to be topologically non-
compact by having several holes and ridges within.
Such a volume usually generate unconnected regions
when it is sliced framewise. In intraframe-interframe
switching, the diffusion mechanism is first applied
within the same frame to grow a region, then results
are propagated to the previous and next frames. The
grown region is assigned as the active shell for the
neighboring frames. As a result, each framewise pro-
jection of a volume will be a single connected region,
and volumes will have more compact shapes.

4.5. Volume refinement

After volume growing, some of the volumes may be negli-
gible in size or very elongated due to the fine texture and
edges. Such volumes increase the computational load of the
later processing. A simple way of removing a small or elon-
gated volume is labeling its points as unclassified and inflat-
ing the remaining volumes iteratively to fill up the empty
space. First, the unclassified points that are adjoint to other
volumes are put into a set of active shell. Then, each active
shell point is included in the volume which is adjoint and

(a) (b)

Figure 8: (a) Volume growing by intraframe-interframe switching.
(b) Recursive diffusion. As visible, recursive diffusion grows vol-
umes as an inflating balloon, whereas switching method first en-
larges a region in a frame then spreads this region to the adjoint
frames.

has the minimum color distance. The point is removed from
the active shell, and the inclusion process is iterated until no
more unclassified point remains. Alternatively, a small vol-
ume can be merged into one of its neighbors as a whole using
volumewise similarity. In this case, similarity is defined as a
combination of the ratio of the mutual surface, compactness
ratio, and color distance. For more details on definition of
such a similarity measure, see [21].

5. DESCRIPTORS OF VOLUMES

Descriptors capture various aspects of the volumes such as
motion, shape, and color characteristics of individual vol-
umes, as well as pairwise relations among the volumes.

5.1. Self descriptors

Self descriptors evaluate a volume’s properties such as its
size γsi(i), its total boundary γbo(i), its normalized color his-
togram γh(i) (0 ≤ γh(i) ≤ 1), and the number of frames
γex(i) that the volume extends in the spatiotemporal data.
Compactness γco(i) is defined as

γco(i) = 1
γex(i)

∑
t

γsi(i, t)
γbo(i, t)2

, (10)

where the framewise boundary γbo(i, t) is squared to make
compactness score independent from the radius of the
framewise region γsi(i, t) at frame t. (Consider the case of
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a disk; γco = πr2/(2πr)2 = 1/(4π).) Note that, in the spa-
tiotemporal data, the most compact volume is a cylinder
along the time axis, but not a sphere. Elongated, sharp-
pointed, shell-like, and thin shapes have lower compactness
scores. However, the compactness score is sensitive to the
boundary irregularities.

Motion trajectory of a volume is defined as the localiza-
tion of its framewise representative points. The representa-
tive point can be chosen as the center of mass, or it can be
the intersection of the longest line within the volumes frame
projection and another line that is longest in the perpendicu-
lar direction. We used the center of mass since it can be com-
puted easily. Trajectory T(i, t) = [Tx

i (t),T
y
i (t)]T is calculated

by computing the framewise averages of volume’s coordi-
nates along x and y directions. Sample trajectories are shown
in Figure 9. Note that, these trajectories do not involve any
motion estimation. The trajectory approximates the trans-
lational motion in most of the cases. The translational mo-
tion is the easiest to be perceived by the human visual sys-
tem, for much the same reason it is the most discriminative
in object recognition. Motion trajectory enables to compre-
hend the motion of a volume between frames without requir-
ing complex motion vector computation. It can also be used
to initialize parameterized motion estimation to improve the
accuracy and to accelerate the speed.

The descriptor γtl(i) measures the length of the trajec-
tory. Volumes that are stationary with respect to the cam-
era imaging plane have shorter trajectory lengths. The set of
affine motion parameters A(i, t) = [a1(i, t), . . . , a6(i, t)] for a
volume models the framewise motion

v(p) =
[
a1(i, t) a2(i, t)

a4(i, t) a5(i, t)

]
p +

[
a3(i, t)

a6(i, t)

]
− p, (11)

where v(p) are motion vectors at p. To estimate these pa-
rameters, a certain number of feature points p f are selected
for each region Ri(t), and corresponding motion vectors are
computed. Feature points are selected among the high spa-
tial energy points. The spatial energy of a point is defined in
terms of color variance as

w(p, e) =
∑
p

∑
k

(
w(p, k)−w

(
p,µk

))2
. (12)

Above, w(p,µk) is the color mean of points in a small lo-
cal window centered around p. After w(p, e)’s are computed,
the points of Ri(t) are ordered with respect to their spatial
energy magnitudes. The highest rank point on the list is as-
signed as a feature point p f , and neighboring points of p f

are removed from the list. Then, the next highest rank point
is chosen until a certain number of points are selected. To
estimate the motion vectors, we used phase correlation in
which the search range is constrained around the trajectory
T(i, t). Given motion vectors v̂(p f ), the affine model is fitted
by minimizing

A(i, t) = arg min
∑
p f

log
(
1 +

∣∣v
(
p f
)− v̂

(
p f
)∣∣), (13)

y

x

t

y

x

t

Figure 9: Sample trajectories of Children and Foreman.

where v(p f ) are the affine projected motion vectors as given
in (11) and v̂(p f ) are the motion vectors estimated by phase-
correlation at feature points p f . The logarithm term works as
a robust estimator which can detect and reject the measure-
ment outliers that violate the motion model. We used down-
hill simplex method for minimization. To reduce the load of
the above computationally intensive motion vector and pa-
rameter estimation procedures, we only used up to 20 points
to estimate the parameters. Note that the motion parame-
ters are estimated for only a small number of volumes, which
is usually between 10 and 100, after the volume refinement
stage.

The frame difference descriptor γδ(i) is proportional to
the amount of color change in the volume after trajectory
motion compensation:

γδ(i) = 1
γsi(i)

∑
p∈Vi

δ
(
x − Tx

i (t), y − T
y
i (t), t

)
, (14)

where the frame difference score δ is given as in (1). We
present truncated frame difference scores in Figure 10. The
skin color descriptor γρ(i) is computed similarly

γρ(i) = 1
γsi(i)

∑
p∈Vi

ρ(p), (15)

where ρ(p) is the skin color score as explained in Section 3.3
and γsi(i) is the size of the volume.
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5.2. Relational descriptors

These descriptors evaluate correlation between a pair of vol-
umes Vi and Vj . The mutual trajectory distance ∆(i, j, t) is
one of the motion-based relative descriptors. It is calculated
by

∆(i, j, t) = ∣∣T(i, t)− T( j, t)
∣∣. (16)

The mean of the trajectory distance Γµ(i, j) measures aver-
age distance between the trajectories, and Γσ(i, j) is the vari-
ance of the distance ∆(i, j, t). A small variance means two
volumes have similar translational motion, and a big vari-
ance reveals volumes having different motion, that is, getting
away from each other or moving in the opposite directions,
etc. One exception happens in case of a large background,
since its trajectory usually falls on the center of the frames.
To distinguish volumes that have small motion variances but
opposite motion directions, for example, two volumes turn-
ing around a mutual axis, the directional difference Γdd(i, j)
can also be defined. The parameterized motion similarity is
measured by Γpm(i, j):

Γpm(i, j) =
∑
t

[
cR

∑
n=1,2,4,5

∣∣an(i, t)an( j, t)
∣∣

+ cT
∑
n=3,6

∣∣an(i, t)− an( j, t)
∣∣],

(17)

where the constants are set as cT � cR to take into ac-
count of the fact that a small change in the parameters an,
n = 1, 2, 3, 4, can lead to much larger difference in the mod-
eled motion field than the translation parameters a5, a6. The
compactness ratio Γcr(i, j) of a pair of volumes is the amount
of the change on the total compactness before and after the
two volumes merge:

Γcr(i, j) =
γco
(
Vi ∪Vj

)
γco(i) + γco( j)

, (18)

where a small Γcr(i, j) means the merging of Vi and Vj will
generate a less compact volume. Another shape-related de-
scriptor Γbr(i, j) is the ratio of mutual boundary of two vol-
umes Vi and Vj to the boundary of volume Vi. The color
difference descriptor Γcd(i, j) gives the sum of the difference
between the color histograms, the mutual existence Γex(i, j)
counts the number of frames in which both volumes exist,
and Γne(i, j) shows whether volumes are adjoint. Similarly,
Γρ(i, j) shows the difference in the skin color scores between
the volumes, and Γ f d(i, j) gives the difference in the change
detection scores.

6. FINE-TO-COARSE CLUSTERING

As described in the general framework, the volumes are
clustered into objects using their descriptors. Different ap-
proaches to clustering data can be categorized as hierarchical
and partitional approaches. Hierarchical methods produce a

Figure 10: Frame difference score δ(p) for Foreman, Akiyo, and
Head. Frame difference indicates the amount of motion for certain
cases.

(a) (b)

Figure 11: (a) Coarse-to-fine (k-means, GLA, quad tree) and (b)
fine-to-coarse clustering. The first approach divides the volumes
into certain number of clusters at each time, the second merges a
pair of volumes at each level.

nested series of partitions while a partitional clustering algo-
rithm obtains a single partition of the data. Merging the vol-
umes in a fine-to-coarse manner is an example to hierarchi-
cal approaches. Grouping volumes using adaptive k-means
method in a coarse-to-fine manner is an example of the par-
titional approaches as illustrated in Figure 11.

In the fine-to-coarse merging method, determination of
most similar volumes is done iteratively. At each iteration,
all the possible volume combinations are evaluated. The pair
having the highest similarity score are merged and affected
descriptors are updated. A similar morphological image seg-
mentation approach using such hierarchical clustering is pre-
sented in [6].

Detection of a semantic object requires explicit knowl-
edge of specific object characteristics. Therefore, user has to
decide which criteria dictate the similarity of volumes. It is
the semantic information that is being incorporated at this
stage of the segmentation. We designed the segmentation
framework such that most of the important object charac-
teristics will be available for user in terms of the self and rela-
tional descriptors. Other characteristics can be included eas-
ily without changing the overall architecture. Furthermore,
the computational load of building objects from the volumes
is minimized significantly by transferring the descriptor ex-
traction in the previous automatic stages.

The following observations are made on the similarity of
two volumes.

(1) Two volumes are similar if their motion is similar. In
other words, volumes having similar motion construct
the same object. A stationary region has high proba-
bility of being in the same object with another region



Automatic Video Object Segmentation by Volume Growing 823

that is stationary, that is, a tree and a house in the
same scene. We already measured the motion similar-
ity of two volumes in terms of motion-based relational
descriptors Γσ(i, j), Γdd(i, j), and Γpm(i, j). These de-
scriptors can be incorporated in the similarity defini-
tion. However, without using further intelligent mod-
els, it is not straightforward to distinguish objects with
similar motion.

(2) Objects tend to be compact. A human face, a car, a flag,
a soccer ball are all compact objects. For instance, a
car in a surveillance video is formed by separate elon-
gated smaller regions. Shape of a volume gives clues
about its identity. We captured shape information in
the descriptors Γcr(i, j) and Γbr(i, j) and also volume
boundary itself. Note that, compactness ratio must be
used with caution in merging volumes. If a volume
is enclosing another volume, their merge will increase
compactness whether these two volumes correspond
to same object or not. Furthermore, many objects such
as cloud formations, walking people, and so forth are
not compact. To improve the success of shape-based
object clustering, application-specific criteria should
be used, for example, a human model for videocon-
ferencing.

(3) Objects have connected parts. This is obvious for most
of the cases, an animal, a car, a plane, a human, and
so forth, unless an object is visible only partially. We
begin evaluation of similarity with the volumes that
are neighbors to each other. Neighborhood constraint
is useful, and yet, can easily deteriorate the segmenta-
tion accuracy in case of an under segmentation, that is,
background encloses most of the volumes.

(4) An object moves as a whole. Although this statement
is not always true for human objects, for rigid bodies,
it is useful. The change detection descriptor becomes
very useful in constructing objects that are moving in
front of a stationary background.

(5) Each volume already has a consistent color by con-
struction, therefore there is little room for utilization
of color information to determine a neighbor to merge
in. In fact, most objects are made from small volumes
that have different colors, that is, human body con-
stituents face, hair, dress, and so forth. When form-
ing the similarity measure, color should not be a key
factor. However, for specific video sequences featuring
people, human skin color is an important factor.

(6) Important objects tend to be at the center. We can find
good examples as in head-and-shoulder sequences,
sports, and so forth.

To blend all the above observations and statements, we
evaluate the likelihood of a volume merge given the relevant
descriptors. For this purpose, we define a similarity score

P∗
(
Vi, j

) ≡ Γ∗(i, j)∑
m,n Γ∗(m,n)

. (19)

Alternatively, P∗(Vi, j) can be defined using a ranking-based

similarity measure. For all possible neighboring volume
pairs, the relevant relative descriptors are ordered in separate
lists in either descending or ascending order. For example,
Lσ(i, j) returns a number indicating the rank of the descrip-
tor Γσ(i, j) in its ordered list. Using the ranks in the corre-
sponding lists, the likelihood is computed as

P∗
(
Vi, j

) ≡ 1− 2L∗(i, j)
l∗(l∗ + 1)

, (20)

where the length of the list L∗ is l∗. The similarity based on
all descriptors is defined as

P
(
Vi, j

) = ∑
∗:σ ,dd,...

λ∗P∗
(
Vi, j

)
, (21)

where constant multipliers λ’s are used to normalize and ad-
just the contribution of each descriptor. These multipliers
can be adapted to the specific applications as well. To detect
human face, skin color descriptor Γρ(i, j) can be included in
the above formula. Similarly, if we are interested in finding
moving objects in a stationary camera setup but trajectory
or parametric modeling are not sufficient enough to obtain
an accurate motion representation, the frame difference de-
scriptor γδ(i) becomes an adequate source.

The pair having the highest similarity score are merged,
and the descriptors of the volumes are updated accordingly.
Clustering is performed until there are only two volumes re-
maining. At a level of the clustering algorithm, we can ana-
lyze whether the chosen volume pair is a good choice. This
can be done by observing the behaviour of the similarity
score of the selected merge. If this score gets small or shows
a sudden drop, the merge is likely to be not a valid merge
although it is the best available merge.

The segmentation algorithm supplies volumes, their at-
tributes, and information about how these volumes can be
merged. Since human is the ultimate decision maker in an-
alyzing the results of video segmentation, it is necessary to
provide the segmentation results in an appropriate format to
user or other decision mechanism for further analysis. We
use an object tree structure to represent segmentation re-
sults as demonstrated in Figure 12. In this representation,
the video is divided into objects, and objects into volumes.
At the lowest volume level, the descriptors and boundaries
are available. Volumes are homogeneous in color and tex-
ture, and they are connected within. The clustering step gen-
erates higher levels that are consistent in motion. The user
can choose the segmentation result at different levels based
on the desired level of details. In case a user wants to change
the criteria used to cluster volumes, only the clustering stage
needs to be executed with new criteria, for example, weights
in different descriptors, which is computationally simple.

The corresponding objects at various object levels of the
multiresolution object tree are presented in Figures 13 and
14. The descriptor multipliers are set as λ f d = λρ = λcr =
λbr = 1, λothers = 0 for Akiyo since we intended to find a hu-
man head having very slow nonrigid motion, λµ = λcr =
λbr = 1, λothers = 0 for Bream since motion is the most
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Figure 12: Multiresolution partition of objects in a hierarchical tree
representation.

Figure 13: Results at object levels 13, 10, 8, 6, 3, and 2 for Akiyo
using frame difference descriptor.

discriminating visual feature for the fish, and λµ = λρ = λcr =
λbr = 1, λothers = 0 for Children since objects are defined
as moving regions that have human skin colors. Hierarchical
clustering finds the mouth of the speaker in Akiyo as the most
different object since it has the highest frame difference and
skin color score. At the consequent levels of the multireso-
lution tree, the face and suit comes because of the same rea-
son. For Children, the red ball has the most discriminating
motion among all the objects, and the proposed video ob-
ject segmentation (VOS) method correctly put it on the top
level of the multiresolution tree (Figure 14). As visible, vol-
ume growing accurately detects the objects boundaries as a
result of adaptive color distance threshold assignment.

7. EXPERIMENTAL RESULTS

We selected a version of the proposed VOS framework to be
used as a reference considering the computational simplicity,
that is, texture features and motion parameters are omitted.
Centroid linkage is used to grow volumes, and 1D histogram-
based formulation (8) is applied to compute color distance.
Intra-inter switching method is preferred to prevent a vol-
ume from having disconnected regions.

We also implemented two other state-of-art semiauto-
matic tracker to provide a detailed comparison of the pro-
posed method with others.

Figure 14: Results at object levels 12, 10, 8, 7, 6, 5, 4, 3, and 2 for
sequence Children using trajectory distance variance descriptor.

7.1. Reference methods

Active MPEG-4 object segmentation (AMOS)

We used a semiautomatic video object segmentation algo-
rithm [23, 24] to compare our results. This algorithm re-
quires the initial object definition, that is, object boundary
to be provided by users by mouse-selected points around
the target object. Then a snake algorithm refines the user
input to fit a smooth boundary. The initial object is gener-
ated through a region segmentation and aggregation process.
To extract homogeneous regions in both color and motion,
motion segmentation based on a dense motion field is used
to further split the color regions. Homogeneous regions are
classified as either foreground or background to form the ob-
ject. Region aggregation is based on the coverage of each re-
gion by the initial object mask: regions that are covered more
than a certain percentage are grouped into the foreground
object. The final contour of the semantic object is computed
from foreground regions. Tracking is done at both the re-
gion and object levels. Segmented regions from the previous
frame are first projected to the current frame using their in-
dividual 2D affine models with 6 parameters. An expanded
bounding box including all projected foreground regions is
computed. Then the area inside the bounding box is split
to homogeneous color and motion regions following a re-
gion tracking process. Pixels that cannot be tracked from any
old regions are labeled as new regions. Thus the resulting
homogeneous regions are tagged either foreground (mean-
ing tracked from a foreground region), background (mean-
ing tracked from a background region), or new (meaning not
tracked). They are then passed to an aggregation process and
classified as belonging to either the foreground object or the
background. To handle possible motion estimation errors,
the aggregation process is carried out iteratively. Finally, the
object contour is computed from foreground regions.

This technique is very similar to the system explained in
COST-211 project [25].



Automatic Video Object Segmentation by Volume Growing 825

Self-affine mapping tracker (SAM)

We also made comparisons with another semiautomatic
tracker [26] in which the initial boundary was entered by
painting a region instead of mouse clicks. The concept of this
method is quite different from that of the snake method. A
self-affine mapping system instead of the energy minimiza-
tion procedure is used to approach and fit the roughly drawn
line to the object contour. The object contour is extracted
as a self-similar curve instead of a smooth curve. The self-
affine map’s parameters are detected by analyzing the block-
wise self-similarity of an image using a simplified algorithm
in fractal encoding.

7.2. Performance measures

As explained in [27], comparative assessment of segmenta-
tion algorithms is often based upon subjective judgement,
which is qualitative and time consuming. Although several
measures can be applied in the presence of a ground-truth
mask, the generation of ground truth requires significant
effort and is often limited to foreground-background type
of object segmentation. Selection of a conventional ground
truth for multilevel object extraction algorithms may not be
possible. For instance, what should be assigned as ground
truth for 3-object level for Children sequence: two boys and
the background, or one boy, ball and background, or some
other possible combination? Should two boys constitute a
single object, or should they be considered as separate en-
tities? For two-object case, we hand segmented foreground
object using the AMOS method since it is semiautomatic.
However, we stopped the tracker whenever it makes an error
and corrected the object boundary accordingly. We observed
that even for the experienced users and careful initialization,
the generation of ground truth is very exhausting and it takes
more than 20 seconds for a single frame on average.

Using the binary ground truth G(p) = (1 : object, 0 :
background), we calculate a point misclassification score
Epixel(t) at frame t as follows:

Epixel(t) = 1∣∣R(t)
∣∣
∑
p

∣∣G(p)− R(p)
∣∣, (22)

where R(p) = 1 if the point p is inside the object, and |R(t)|
is the number of points inside the object. This measure com-
putes the ratio of the misclassified points to the total number
of object points in the current frame.

In addition to ground-truth-based measure, we use three
other color- and motion-based performance measures (spa-
tial color distance, temporal histogram distance, and motion
distance). These measures do not require a ground truth, and
depend on these assumptions: object boundaries coincide
with both the color and motion boundaries, and the color
histogram of the object is stationary from frame to frame. In
order to measure the spatial color difference, a set of probe
points just inside and just outside of the objects are selected.
For the points pout, pin that are at the opposite sides of the
object boundary and at an equal distance, the averaged color
I(pout) and I(pin) are computed in the M×M neighborhood

of the corresponding points. The color difference measure
along the boundary is calculated as

Espacol(t) = 1− 1∣∣B(t)
∣∣

∑
p∈B(t)

∣∣I(pout
)− I

(
pin
)∣∣, (23)

where |B(t)| is the total length of the object boundary B(t)
in frame t. When the location of the object boundary is es-
timated correctly, we expect the spatial color measure Espacol

to take a small value. However, the converse of this statement
is not necessarily true. That is, if the spatial color measure
has a small value, this does not imply that the object bound-
ary is located correctly. This color measure is expected to
be reliable when the object and background textures are not
cluttered and when the color contrast across the boundary is
high.

A straightforward way to assess the temporal changes in
the segmented object is to calculate the pairwise color his-
togram differences of the objects at time t and t−1. However,
a drawback of this approach is that it may not catch a grad-
ual deterioration. Therefore, we can alternatively check the
histogram differences between the first and current object re-
gions. This method penalizes the cumulative difference effect
of the previous approach. The temporal histogram difference
measure is defined as

Ehist(t) = 1− ∣∣γh(i, t)− γh(i, 1)
∣∣, (24)

where γh(i, 1) is the normalized framewise color histogram
of the object i at the first frame t = 1. We used the fore-
ground object for the presented results in Figures 15, 16 and
17. In order to quantify how well the estimated object bound-
ary coincides with actual motion boundaries, we adopt the
geometry of the probes used for spatial color difference and
consider the difference of the average motion vectors in the
neighborhood the points. The motion measure for frame t is
estimated as follows:

Emotion(t) = 1− 1∣∣B(t)
∣∣

∑
p∈B(t)

1− e−|v(pout)−v(pin)|. (25)

The motion difference can sometimes be large, not because
of errors in segmentation, but as a consequence of the fact
that not all parts of the object is moving or having a uniform
translational motion.

7.3. Ground truth for motion field

We implemented a dense optical flow estimation method
[28, 29] to generate the ground-truth motion vectors as il-
lustrated in Figure 18. This is done only for comparison, and
this dense field is not a part of the proposed segmentation
framework. Instead of the simple block matching, we used
phase correlation which is a frequency domain motion mea-
surement method that makes use of the shift property of the
Fourier transform. Phase correlation takes the advantage of
the fact that a shift in the spatial domain is equivalent to
a phase shift in the frequency domain. Using the rotation
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Figure 15: Comparison of (a) the spatial color distance, (b) tempo-
ral histogram distance, and (c) motion distance measures for Akiyo.
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Figure 16: Comparison of (a) the spatial color distance, (b) tem-
poral histogram distance, and (c) motion distance measures for
Bream. When the AMOS cut most of the fish, its spatial color
and temporal histogram errors became very large in comparison to
VOS.
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Figure 17: Comparison of (a) the spatial color distance, (b) tempo-
ral histogram distance, and (c) motion distance measures for Chil-
dren.

and scale properties of the Fourier transform, it is possible
to find the rotation and scale as a shift in the frequency do-
main invariant to any translation. We first window both im-
ages due to repeating nature of the frequency spectrum, and

(a)

(b)

(c)

Figure 18: Estimated ground-truth motion vectors using phase cor-
relation for the frame 101 of (a) Akiyo, (b) Bream, and (c) Children.

calculate its Fourier transform. We filter out the DC com-
ponent and any high-frequency noise. We then calculate the
normalized cross power spectrum above. We take the inverse
Fourier transform, and find peak on correlation surface. An
interpolation is done finally on the surface to achieve sub-
pixel accuracy. Phase correlation is limited by the number of
samples that the Fourier transform can use, thus limiting the
resolution in the frequency domain. Therefore, the block size
is chosen as 32× 32.



828 EURASIP Journal on Applied Signal Processing

Akiyo

Bream

Children

Mother

Stefan

0 50 100 150

Time (ms)

Preprocessing
Volume growing
Postprocessing
Clustering

Figure 19: Average processing times of different components for a
single frame. Preprocessing includes filtering and threshold adapta-
tion. Volume growing includes marker selection and one-at-a-time
growing. Postprocessing includes volume refinement and descriptor
extraction.

7.4. Discussion on results

We extensively tested the proposed algorithm and the refer-
ence methods. For the AMOS method, we carefully marked
the initial boundary by mouse clicking on more than 50
boundary points. The initial boundary is aligned on the ob-
ject as close as possible. Then we segmented the sequence for
a total of 136 frames. We generated spatiotemporal data for
the same-sized video and run the automatic segmentation as
mentioned before.

For the VOS method results presented in this section, we
did not fine-tune any parameters but only modified the mul-
tipliers in the clustering stage since they are related with the
semantic definition which differs for each sequence. We set
the multipliers of the hierarchical clustering stage as λρ = 1,
λothers = 0 for Akiyo, λµ = 1, λothers = 0 for Bream, and
λµ = 1, λothers = 0 for Children to be able to extract semanti-
cally similar objects as the hand-generated ground truth, that
is, face, fish, children, and ball.

We performed experiments for 320× 240 of YUV video
on a P4 1.8 Ghz CPU. In Figure 19, we show the average pro-
cessing time for each module of the proposed method for
various test sequences. The differences among the process-
ing times are a result of the spatial color distribution and the
number of small volumes going into the volume refinement.
For instance, for the Bream sequence, the fine texture on the
fish causes several small volumes to be removed. On the other
hand, the smooth background and the relatively larger vol-
umes after the volume growing keep the computational time
low for Akiyo. Table 2 shows the averaged CPU processing
time of a frame and preparation time required before the
segmentation for the semiautomatic methods. For a small
number of experienced users, we counted the initial bound-
ary marking time for the reference methods. As presented in

Table 2: Processing times of single frame.

Processing Preparation

VOS AMOS SAM VOS AMOS SAM

Akiyo 86 ms 2.1 s 70 ms 27 ms 36 s 25 s

Bream 128 ms 6.3 s 113 ms 25 ms 45 s 35 s

Children 125 ms 5.5 s 120 ms 25 ms 55 s 35 s

Mother 68 ms 7.2 s 123 ms 25 ms 40 s 23 s

Stefan 157 ms 2.2 s 87 ms 28 ms 30 s 25 s

the table, most users spend more than 30 seconds to enter
the initial object boundary for the AMOS and SAM methods.
The preparation time for the VOS method indicates the time
required for threshold adaptation and memory handling be-
fore the segmentation. We observed that both of the SAM
and VOS methods have close speeds (100 miliseconds/frame)
although the SAM algorithm requires additional 30 seconds
for boundary initialization. Moreover, we observed that the
segmentation results of the SAM deteriorated after only a
small number of frames (around 10 frames) and requires
halting the tracking process and correcting the boundary.
The AMOS method needs more time to process a frame
(more than 2 seconds) but is more stable. Thus, we com-
pared the segmentation accuracy with the better-performing
AMOS method.

We present the segmentation results in Figure 20. The
proposed method consistently produces both visually and
quantitatively better results. In Figure 21, the misclassifica-
tion errors are plotted for the VOS (blue) and AMOS (red).
For Akiyo, the error scores are similar due to the minor
differences between the extracted boundaries. However, the
semiautomatic method (AMOS) fails to maintain the correct
boundary on the left side of the head and starts expanding
after certain number of frames. This also happens whenever
object moves fast, which causes the tracker to miss the part
of the object, as in the case of Children when the boy on the
left suddenly kneels down. For Bream, the proposed method
manages to detect the correct boundary even when the fish
changes its direction. On the other hand, the motion estima-
tion and boundary fitting mechanisms of the AMOS cannot
compensate for this movement as a result object boundary
is significantly deformed. One shortcoming of the proposed
method is that the volume refinement process may drop a
grown volume if it fails to satisfy size criterion. For instance,
the size of the volume corresponding to the feet of the boy on
the left in Children is less than the threshold, thus it is not in-
cluded among the volumes send to the clustering stage. Still,
it is evident that the proposed algorithm has results superior
to those of than the reference one.

The computed point discrepancy measure (given in
Figure 21) also confirms these observations. We used (22) to
find the misclassification scores.

In Figures 15, 16, and 17, we present the nonground-
based performance measure results. These graphs confirm
the ground-truth results, although for some certain con-
ditions the sensitivity of the motion and temporal color
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Figure 20: Segmented objects for frames 1, 26, 101, 116, and 136 of test sequences. Ground truth is marked by a red boundary in the original
images. The red areas in the segmented images show undersegmented pixels which are missed. The cyan areas correspond the oversegmented
regions where the algorithm exceeded object boundary. White + cyan areas show what segmentation generates.

distance are limited. In Figure 22, we give a plot of perfor-
mance measures versus object levels and frame numbers.
As visible, the errors decrease for most frames as the object
number gets smaller until it reaches 2, which was the inten-
tion of foreground/background segmentation. However, we
observed that the measures do not always comply with this
observation since they depend on the previously described
assumptions.

In Figure 23, the highest-similarity scores P(Vi, j) at each
object level are plotted for different test sequences. One hy-
pothesis is that if the clustering stage “accurately” merges
two volumes at the current level (k), in the highest likeli-
hood in the next object level (k − 1) will be less than the
highest value at the current level (k). Otherwise, a possible
merge, which has higher likelihood value, would be missed
since it is encountered in the following level (that is how we
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Figure 21: Misclassification errors (22) of the proposed segmenta-
tion framework (VOS) and a semiautomatic method (AMOS) using
manually extracted ground truths for (a) Akiyo, (b) Bream, and (c)
Children.

find the existence of such a merge). This hypothesis is justi-
fied by the object level versus performance measure plot as
shown in Figure 23. These plots show that the highest likeli-
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Figure 22: Performance measures for different object levels in the
hierarchical clustering: (a) the motion distance for Akiyo, (b) the
spatial color distance for Bream, and (c) the temporal histogram
distance for Children. As expected, the temporal histogram errors
consistently dropped for the smaller object numbers.

hood drops as the object level decreases, which also indicates
that the merging process works accurately.

We also analyzed the effects of the color quantization
as shown in Figure 24. By quantizing the 3D space into
256 levels, we are able to decrease the computational load
by 15% without causing a degradation of the segmentation
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Figure 23: Highest similarity score monotonically decreases as the
volumes are merged. Note that after volume growing, the number
of volumes are different for each sequence. Large decreases indicate
potentially weak merges.

Figure 24: Effects of quantization by 256, 64, and 16 dominant col-
ors. Quantization decreases the computational load. However, with
the decreasing number of quantization levels, the extracted volume
boundaries become more sensitive to the quantization errors. First
row: 256 color levels Head sequence for 17, 6, and 2 objects after
clustering. Second row: 64 levels for 10, 3, and 2 objects. Third row:
16 levels for 11, 4, and 2 objects. Fourth row: 32 levels Akiyo for 18,
6, and 2 objects. Last row: 16 levels for 11, 4, and 2 objects.

performance. This gain is a result of using shorter data struc-
tures for memory handling in the implementation. Further
quantization, that is, into 64 and 32 levels, requires platform-
specific data structures. Severe quantization, that is, into 16
and 4 levels, significantly disturbs the volume boundaries
and washes out skin colors.

8. SUMMARY

We introduced an automatic segmentation framework. The
main stages of the presented automatic segmentation frame-
work are filtering and simplifying color distributions, calcu-
lating feature vectors, assigning markers as seeds of volumes,
volume growing, removal of volume irregularities, deriving
self and relational descriptors of volumes, and clustering vol-
umes into a multiresolution object tree. Several alternatives
for each of the preceding stages have been explored.

For volume growing, we discussed several linkage meth-
ods: single linkage, dual linkage, and centroid linkage.
We proposed threshold adaptation techniques for centroid-
linkage method as well. Furthermore, we compared various
modes of the volume growing. Out of these, the simultane-
ous growing and one-at-a-time growing methods basically
differ in the number of markers that are active at each it-
eration. The recursive diffusion and intraframe/interframe
switching methods offer different expansion mechanisms.
We assigned self descriptors to quantify individual vol-
umes. We also introduced the relational descriptor concept
which evaluates the similarity between a pair of volumes.
In addition to descriptors that capture general attributes
such as motion and shape, we discussed ways to integrate
application-specific features, such as skin color and frame
difference, into the descriptors. Hierarchical clustering ap-
proach was adapted to group volumes into objects. We used
a rank-based similarity measure of volumes. We proposed
a multiresolution object tree representation as an output
of the segmentation. This framework blends the advantages
of color-, texture-, shape-, and motion-based segmentation
methods in an automatic and computationally feasible way.

Our experiments proved the effectiveness and accuracy
of the proposed framework.

As a future work, we plan integrating the previously men-
tioned texture and available compressed domain features to
the automatic segmentation framework.
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